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ABSTRACT 

It has recently been shown that a strongly irreducible subshift of finite 
type in two or more dimensions may have more than one measure of 

maximal entropy. In this paper we obtain some results on when (i.e. for 
what kinds of subshifts of finite type) this happens, and when it does not. 

In particular, we show that the parameter of a certain subshift of finite 
type introduced by Burton and Ste~: has a critical value, below which 
we have a unique measure of maximal entropy, and above which we have 
non-uniqueness. 

1. I n t r o d u c t i o n  

I t  is well known tha t  a s t rongly irreducible subshift  of finite type in one dimension 

has a unique measure of maximal  entropy (see [20]). Recently a counterexample  

to this in higher dimensions was shown in [3], followed by other examples in [4] 

and  [10]. In  analogy with the language of s ta t is t ical  mechanics, we say tha t  a 

p h a s e  t r a n s i t i o n  occurs whenever a subshift  of finite type has more t h a n  one 

measure of maximal  entropy. The ma in  purpose of this paper  is to ob ta in  some 

results on when a s trongly irreducible subshift  of finite type exhibits  a phase 

t rans i t ion ,  and  when it does not.  A second purpose is to emphasize connect ions  

between s tat is t ical  mechanics and  subshifts of finite type (see [10] and  [11] for 

more on this). 
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Let F be a finite set of at least two elements. Typically, each element of the 

cubic lattice Z d will be assigned a value from F. x, y and z will denote elements 

of Z d, which will be called si tes.  

]1 I]1 will denote the L 1 norm, i.e. I I (x l ,x2 , . . .  ,Xd)l]l ---- ]Xl] "~-" "" "~ ]xdl, while 

]l ]l~ denotes the L ~ norm given by Iixi]~ = maxi ]xil. We say that  y is a 

n e a r e s t  n e i g h b o u r  of x if ]Ix - YI]I = 1. By the b o u n d a r y  OS of a finite set 

S E Z  d w e m e a n 0 S = { x E z  d \ S : 3 y E S s u c h t h a t  I i x - y i l l = l } .  

A c o n f i g u r a t i o n  is a map ~?: A C Z d ~ F.  We call ~(x) the va lue  of the 

configuration at site x. Usually A will be a finite set or Z d itself. A configuration 

y: A ~ F is a r e s t r i c t i o n  of a configuration ~': B ~ F if A C B and ~ agrees 

with y on A. We also say in this case that  r is an e x t e n s i o n  of ~?. Note that  Z d acts 

on configurations by translation. If y E Z d set for x E Z d, Ty(x) = x + y and for 

A C_ Z d, set TyA = { x + y :  x E A}. I f~:  A , F,  we also let Ty~(x) = ~(T_y(x)) 

f o r x  E TyA. 

Detinition 1.1: Let ~i: Ai ~ F; 1 < i < K be a finite set S of configurations 

with A~ finite for each 1 < i < K.  The s u b s h i f t  o f  f in i te  t y p e  (in d dimensions) 

corresponding to S is the set X _C F z~ consisting of all configurations y: Z d ----* F 

such that  for all y E Z d, it is not the case that  Tyy is an extension of some ~i. 

(The yi 's should be thought of as the disallowed finite configurations.) 

I f  X is a subshift of finite type (a SOFT),  then X is closed in the usual product  

topology and is shift invariant, i.e., y E X and y E Z d implies Tyy E X. 

If 0: A ~ F is a configuration, we say that  0 is c o m p a t i b l e  (with X)  if 

3y E X such that  ~ is a restriction of ~. Two important  classes of SOFTs are 

given by the following definitions: 

Detinition 1.2: An X C_ F zd is a n e a r e s t  n e i g h b o u r  s y s t e m  if it is a SOFT 

for which all the corresponding disallowed configurations ~]i: Ai ~ F have L 1- 

diameter  1, i.e. each Ai consists of two nearest neighbours. 

Det~l~ition 1.3: Let X be a SOFT. X is s t r o n g l y  i r r e d u c i b l e  if there is an r _> 0 

such that  whenever we have two finite compatible configurations ~1:A1 ~ F 

and r/2:A2 * F and the distance between A1 and A2 is greater than r, there 

is then an y E X that  is an extension of both Yl and ~72. 

Note that  Definition 1.3 is independent of whether "distance" refers to L 1 or 

L ~ norm. 

A simple but nevertheless very interesting SOFT is the following: 
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Example 1.4: The hard-core model: Let F = {0, 1} and let X be the set of 

configurations 7/C F zd where for no two nearest neighbours x, y E Z d we have 

~(x) = 1, ~/(y) = 1, so that  in other words X is the SOFT where the disallowed 

finite configurations are the d different orientations of the configuration (1 1). 

X is a nearest neighbour system, and it is also strongly irreducible since any 

two finite compatible configurations at distance 2 or 'more from each other can 

be embedded into a sea of O's. This model is studied e.g. in [2]. The reason for 

its name is the following physical interpretation: the O's are empty sites and the 

l ' s  are indistinguishable gas particles with non-negligible radius. In order not to 

overlap two particles are not allowed to occupy the same or adjacent sites. 

A SOFT with a somewhat related physical interpretation is 

Example 1.5: The Widom Rowlinson model: Let r _~ 1 and m ~_ 3 be integers 

and let F = {1, 2 , . . . ,  m}. Let X be the strongly irreducible SOFT consisting of 

the configurations ~ E F z~ where for no x,y  E Z d with [Ix - Y[Ioo _~ r we have 

~/(x) = 1, ~/(y) -- 2. We think of 1 and 2 as two kinds of particles that  cannot 

coexist within distance r from each other. The name of this model refers to the 

work of Widom and Rowlinson [21] who introduced an analogous model of point 

particles in R d. A lattice version which closely resembles this SOFT is considered 

in [15]. 

The next definition gives a measure of the degree of complexity of a SOFT 

X. Let An = I-n, n] d and Xn = {~: An ~ F with ~ compatible }. We also let 

Nn --- lxnl  (IAI denotes the cardinality of A) and finally X(~) = 

{r/C X: r/is an extension of 0}. 

Definition 1.6: The t o p o l o g i c a l  e n t r o p y  of X is 

H ( X )  = lim log Nn 

Suppose that  # is a translation invariant probability measure on X. Then the 

m e a s u r e  t h e o r e t i c  e n t r o p y  of # is 

1 
g(#)  = lirnoo iAn] E t t(X(O))logp(X(O)).  

OEX~ 

Both of these limits exist by subadditivity. Clearly for any such # we have 

H(#)  _< H(X) .  It  is in fact well known that  H ( X )  = s u p u H ( # )  where the 

supremum is taken over all translation invariant probabili ty measures on X. 
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Moreover, the supremum is achieved at some measure (see [19]). We will only be 

interested in probability measures in this paper, so we will simply let "measure" 

be short for "probability measure". 

The following characterization of measures of maximal entropy for strongly 

irreducible SOFTs is from [3]. The "only if" direction of Proposition 1.8 was 

shown under some extra assumption, but it was noted in [11] that  this assumption 

could be dropped more or less without modifying the proof. 

Definition 1.7: A measure # on X C_ F za is said to have u n i f o r m  c o n d i t i o n a l  

p robab i l i t i e s  if for each n, the conditional distribution on A,~ given the config- 

uration/5 on Z d \ As is the uniform distribution among all those configurations 

which together with 8 form an element of X. 

PROPOSITION 1.8: Consider a strongly irreducible S O F T  X .  Let # be a trans- 

lation invariant measure on X .  Then t~ has maximal entropy if  and only if it has 

uniform conditional probabilities. 

The reader might feel that it would be more natural in Definition 1.7 to impose 

uniform distributions on any finite S C Z d and not just on the boxes A,.  This 

would in fact lead to an equivalent definition, as one can easily show using the 

fact that any such S is contained inside An for some sufficiently large n. 

Our next example is the aforementioned SOFT from [3] showing the possibility 

of a phase transition. 

Example 1.9: The beach model: Let d > 2, let M1 and M2 be positive integers 

such that M1 < M2, and let the alphabet be 

F = ~ U ~ U ~ U ~  

where 

F1 = { - M 2 , - M 1  + 2 , . . . , - M 1 -  1}, 

F2 = { - M 1 , - M I +  1 , . . . , - 1 } ,  

F3 = {1 ,2 , . . . ,M1} ,  

F4 = { M 1 + 1 ,  Ml  + 2 , . . . , M 2 } .  
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Call a symbol f E F 

negative if f E F1 U F2, 
positive if f E F3 U F4, 
unprivileged if f E F1 U F4, 
privileged if f E F2 U F3, 

and consider the d-dimensional SOFT where a negative may not sit next to a 

positive unless they are both privileged. This SOFT is a strongly irreducible 

nearest neighbour system and was introduced (for the special case M1 = 1) and 

studied by Burton and Steif [3]. For fixed d, this looks like a two-parameter family 

of SOFTs, but in fact the only interesting parameter (at least for our purposes) 

is the ratio between the number of unprivileged and the number of privileged 

symbols, or equivalently M = -~ .  This will be explained in Section 4. 

The reason why we call this model the "beach model" is the following (some- 

what naive, we admit) interpretation in two dimensions: Think of ~](x) as the 

altitude above sea level at site x. The restrictions of the SOFT then prevents 

shores from being too steep. 

One of the main results in [3] is that for this model with M > 4e28 d we have a 

phase transition. We will give an alternative proof of phase transition in Section 

4. An issue which is not resolved in [3] is whether the occurrence of a phase 

transition is increasing in M. In other words, if ml  < m2 and there is phase 

transition with M = ml,  must this be the case for M = m2 as well? In the 

following theorem we answer this question in the affirmative. 

THEOREM 1.10: For the beach model in d dimensions, d _> 2, there exists an 

M~(d) E (1, oc) such that we have a phase transition whenever M > M~(d), and 

a unique measure of  maximal  entropy whenever M < M~(d). 

Here c stands for "critical". This result is analogous to a well known result 

for the ferromagnetic Ising model (Theorem 2.3). We will give a lower bound 

of M~(d), showing that  there is a unique measure of maximal entropy whenever 

M < (2d 2 + d + 1)/(2d 2 + d - 1). Combining this with the result from [3] referred 

to above, we have, for d >_ 2, 

2 d 2 + d + 1  
2d 2 + d - 1 <- M~(d) <_ 4e28 d. 

Another result from [3] is that the number of extremal measures of maximal 

entropy is exactly 2 when M > 4e28 d. A natural open question is whether this 

is true for all M > M~(d). 
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One feature of the beach model which we will obtain, and which the proof of 

Theorem 1.10 will be based on, is the following: Pick a configuration ~1 E F za 

according to some measure of maximal entropy. Then identify all positives with 

+1 and all negatives with -1 .  The resulting configuration rf E { -1 ,  1} zd will 

turn out to be distributed as a Gibbs measure for a certain potential which we 

introduce in Section 2 and which somewhat resembles the Ising model. 

To see the significance of strong irreducibility, it suffices to consider the follow- 

ing (trivial) example: 

E• 1.11: Let F = {0, 1} and let X be the SOFT for which the disallowed 

configurations are those in which a 1 sits next to a 0. X has exactly 2 elements, 

and thus (even in one dimension) exactly 2 measures of maximal entropy. Of 

course, X is not strongly irreducible. 

The discovery of phase transitions for the beach model and for other strongly 

irreducible SOFTs in 2 or more dimensions calls for general criteria for uniqueness 

(or non-uniqueness) of measures of maximal entropy. Our next result is a sufficient 

criterion for uniqueness. We first need some more definitions. 

For a SOFT X, let the r a n g e  R of X be defined by 

R(X) = max max ]Ix - YII~ 
iE{1 ..... K}  x,y~A~ 

where A1 , . . . ,  AK are the finite subsets of Z d corresponding to the disallowed 

finite configurations of X. R(X) can be thought of as the maximal distance 

over which the values at sites influence each other directly. The hard-core model 

and the beach model have range 1, as have all nearest neighbour systems, while 

the Widom-Rowlinson model has range r. Let N(X)  be the cardinality of the 

alphabet F of X. For any site x E Z d and any compatible configuration 5 on 

Z d \ ( x }  let N~(5) be the number of allowed values at x given 5. Note that  by 

the shift invariance of X we have that min~ Nx(5) is independent of x, and define 

the g e n e r o s i t y  G of X by 

min~ N~ (5) 
G(X) - N(X)  

In words, G(X) E (0, 1] is the minimal fraction of the alphabet allowed at some 

site given the configuration on the rest of the lattice. The hard-core model has 

generosity �89 the beach model has generosity ~M and the Widom-Rowlinson 
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model has generosity m-__2 Let pc(Z d) denote the critical value of independent 

site percolation in d dimensions (see Section 3). 

THEOREM 1.12: Let X be a S O F T  in d dimensions with range R(X) and gen- 

erosity G(X).  I f  
(2R(X) + 1V - 2 

G(X) > 
(2R(X) + 1V - 1 

then X has a unique measure of  maximal entropy. I f  X is a nearest neighbour 

system with 
1 

G(X) > 
1 + pc(Z~) 

then X has a unique measure of maxima/entropy.  

This amounts to saying that for SOFTs in a given dimension and with a given 

range, sufficiently large generosity implies uniqueness of measure of maximal 

entropy. The result is in the same spirit as Theorem 1.17 in [4], which says that  

if we take a nearest neighbour system X, and add sufficiently many symbols 

to the alphabet, all of which are allowed to be adjacent to any other symbol 

including each other, then we get a unique measure of maximal entropy for the 

modified nearest neighbour system. In statistical mechanics these kinds of results 

are sometimes referred to as "high noise ergodicity criteria". 

One might hope to find a bound for G(X) yielding uniqueness uniformly in 

R(X),  but the next theorem says that  this is not possible, except of course for 

the trivial bound G(X) -- 1, i.e. no forbidden configurations, in which case the 

measure assigning i.i.d, uniform values to all sites is (by Proposition 1.8) the 

unique measure of maximal entropy. 

THEOREM 1.13: In any dimension d >_ 2 and for any e > 0 there exists a S O F T  

X such that G(X) _> 1 - e  and X has more than one measure of  maximal entropy. 

A typical application of Theorem 1.12 is the following corollary, stating that  

the Widom-Rowlinson model with certain parameters has a unique measure of 

maximal entropy. We cannot drop the restrictions on the parameters, since for 

certain other parameter values phase transition occurs. In fact, the counterex- 

ample proving Theorem 1.13 will be the Widom-Rowlinson model with carefully 

chosen parameters. 

COROLLARY 1.14: Let X be the Widom-Rowlinson model with parameters r 

and m. I f  m > 2((2r + 1)  d - 1) then X has a unique measure of  maximal entropy. 
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Proo~ Immediate from Theorem 1.12 using R(X) = r and G(X) = m-2 | 
m 

Another fact which is worth mentioning here is that the concept of generosity 

yields a criterion for a SOFT to be irreducible. It is not hard to show that  if X 

is a SOFT satisfying G(X) > �89 then X is strongly irreducible. Example 1.11 

shows that the > cannot be replaced by a _>. 

The rest of this paper is organized as follows. Section 2 contains the necessary 

prerequisites on the Ising model and other ferromagnetic models of statistical 

mechanics used in later sections. Section 3 quotes and discusses two uniqueness 

criteria for random fields, known as Dobrushin's criterion and disagreement per- 

colation. Section 4 is devoted to the beach model; in particular, Theorem 1.10 is 

proved. Section 5, finally, elaborates on the Widom-Rowlinson model and proves 

Theorems 1.12 and 1.13. 

2. T h e  Is ing model and related potentials 

We consider, in this section, certain finite range potentials together with their 

Gibbsian random fields. Some familiarity with statistical mechanics (in particular 

the Ising model) is helpful, but not essential. The section is self-contained, even 

though the reader may want to turn to [7] or [16] for a more thorough discussion. 

We begin our discussion with a somewhat general setup. 

A Gibbsian random field can be regarded as a certain EZ~-valued random vari- 

able, where E is a finite set. A Gibbs measure (or Gibbs state) is the distribution 

of a Gibbsian random field. We will only be considering the case E = { -1 ,  1). A 

typical element of E zd will be denoted 7. The potential will be given by the in- 

t e r a c t i o n s  (~1 , . - . ,  Ck) = r which we now proceed to define. For i = 1 , . . . ,  k, 

let Ai be a finite nonempty subset of Z ~ and let ~i(y(A~)) be a real-valued 9CA,- 

measurable function (for a set S C_ Z d, -~s denotes the a-algebra generated by 

~(S)). We let r be the corresponding :FT~A,-valued random variable, 

so that if 0 = T _ , y  we have r = r making, loosely speaking, 

the interactions shift invariant. The H a m i l t o n i a n  (or the e n e r g y )  in a box An 

is 
k 

i = l  T=AINAn~O 

i.e. ~i(~(TxAi)) summed over all interactions and all TxAi that  intersect An. 
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More generally, for a finite set S C Z d, the Hamiltonian in S is defined 

k 

H ~ ( ~ ? ) = E  E r  

Let r = maxi max~,ueA , ] Ix-YiI~,  so that,  in two dimensions, r is the maximal  

height or width of any of the Ai's. For a finite set S C Z d, let the A - b o u n d a r y  

COAS = {x E Zd \ S: 3y E S,i  �9 { 1 , . . . , k } , z  �9 Zd so that x, y �9 TzAi}. OAS 

is clearly finite (S is contained in An for some n, and then OAS is contained in 

An+r), and should be thought of as being the set of sites in Z d \ S that  interact 

directly with S. 

We also introduce the following notation: for disjoint sets A, B C Z d, and 

configurations ~1 and ~2 on A and B, respectively, let ~1 V ~2 be the configuration 

on A U B which agrees with ~1 on A and with ~2 on B. 

Let ~ denote a configuration on the box An. Given a configuration 5 �9 E OAA~ 

on the A-boundary of A~, let r be the measure on E A~ given by 

where 
r 5 Zn = E e-H~(av~) 

v/EEAn 

making r a probability measure. It  is common practice in statistical mechanics 

to include a factor 3 ,  the inverse temperature,  in the exponent. We shall, however, 

consider the temperature  to be fixed; we can then incorporate the factor ~ into 

the Hamiltonian. This amounts to setting T = 1. 

Definition 2.1: A measure # on E z~ is called a G i b b s  s t a t e  for �9 if for each n, 

the conditional distribution on A,~ given the configuration 5 on Z d \ An is given 

by c t ~  ' above, where 5 ~ is the restriction of 5 to OAAn. 

The corresponding statement  where An is replaced by an arbi trary finite set 

S C Z d follows easily; compare with the comment following Proposition 1.8. One 

can also show, for arbi trary ~, the existence of at least one Gibbs state. There 

may sometimes be more than one Gibbs state, in which case a phase transition is 

said to occur. When this happens and when it doesn' t  is an issue which has been 

studied extensively for three decades, and which can be said to be the statistical 
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mechanics analogue of the more recent question of phase transitions for subshifts 

of finite type. 

The above is the general setup for finite range potentials. We now turn to the 

examples which will be of use to us in Section 4. The first one is the well known 

Ising model, while we propose to call the second, which seems to be new, the site- 

centered ferromagnet. We choose this name because the model is ferromagnetic 

in the sense of Definition 2.6 below, and because, in contrast to the Ising model, 

it is the sites themselves, rather than pairs of nearest neighbours, that can be 

either "satisfied" (low energy) or "unsatisfied" (high energy). The reason for 

introducing this new model is its close relationship with the beach model which 

we will establish in Section 4. 

Example 2.2: The Ising model: We define the 2-dimensional standard Ising 

model with zero external field, the generalization to higher dimensions being 

obvious. Let d = 2, E = { -1 ,  1}, k = 2, and the Ai's be given by 

A1 = {(0, 0), (0, 1)}, 

A2 = {(0, 0), (1, 0)}. 

This means that there are only nearest neighbour interactions. Fix a constant J 

and let the r  be given by 

(I)1(I) = (I)1(-11) = r 1) = (I)2(-1 - 1) = - J ,  

(1)1(11 ) = ( I ) l ( J l )  = (1)2(--1 1) : (I)2(1 - 1) = J, 

where e.g. ( -~1 ) denotes the configuration ~ on A1 given by ~(0, 0) = 1, y(0, 1) = 

-1 .  The sites are thought of as atoms, with spins pointing either up (+1) or 

down ( -1 ) .  Note that the model is symmetric with respect to { -1 ,  1}. J is called 

the coupling constant. When J > 0, nearest neighbours will tend to have the 

same value, and we speak of the ferromagnetic Ising model, while the case J < 0 

is referred to as the antiferromagnetic Ising model. Our interest will be focused 

upon the ferromagnetic case in which we think of a pair of nearest neighbours 

as being unsatisfied if they have different values and satisfied otherwise. One of 

the classical results in statistical mechanics is that for sufficiently large J,  there 

are (at least) two different extremal Gibbs states. The following theorem (see [7], 

[16]) tells us this and more: 
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THEOREM 2.3: For the Ising model with d _> 2 there exists Jc(d) E (0, oo) such 

that  in d dimensions there is a unique Gibbs state for 0 ~_ J < Jc(d) while for 

J > Jc(d) there is more than one Gibbs state. 

The exact value of Jc(d) is only known in 2 dimensions: J~(2) = �89 log(1 4- x/2). 

Some bounds are known in higher dimensions. One of these is that  Jc(d) is 

decreasing in d. When d = 1 the Ising model reduces to an irreducible aperiodic 

two state Markov chain for which a phase transition never occurs. 

Example 2.4: The site-centered ferromagnet: For any dimension d, let E = 

{ -1 ,  1}, k -- 1, and let A1 consist of the origin together with its 2d nearest 

neighbours. Given a configuration ~ E E z~ we say that  a site x is sa t i s f i ed  if the 

value at x equals the value at each of its nearest neighbours; otherwise we say x 

is unsa t i s f i ed .  Let L be a positive real number and let 

S 0 if the origin is satisfied, 
~10?(A1)) [ L if the origin is unsatisfied. 

This model is, just like the Ising model, symmetric with respect to { -1 ,  1}. In 

Section 4 we will prove the following theorem which tells us that  the site-centered 

ferromagnet has more than this in common with the Ising model. 

THEOREM 2.5: For the site-centered ferromagnet with d _> 2 there exists Lc(d) E 

(0, oo) such that in d dimensions there is a unique Gibbs state for 0 < L < L~(d) 

while for L > Lc(d) there is more than one Gibbs state. 

There are differences, however, between the Ising model and the site-centered 

ferromagnet. Here is one such difference: The Ising model is Markov, in the sense 

that  the conditional distribution on a box An given a configuration on Z d \ An 

depends only on the values on 0An. The corresponding conditional distribution 

for the site-centered ferromagnet depends on the values on the larger set OAAn = 

{x E Z d \ An: 3y E An such that  [i x - YI]I _~ 2}. 

Now it is t ime to make precise what is meant in general by "ferromagnetism". 

Definition 2.6: A potential  �9 = ( ~ 1 , . . . ,  Ck) on { -1 ,  1} z~ is said to be f e r r o -  

m a g n e t i c  if for i = 1 , . . . ,  k, 

Oi(~l(Ai)) = - J i  r I  ~l(x) + Ki 
xEAi 

where J 1 , . . . ,  Jk are nonnegative real numbers and K 1 , . . . ,  Kk are real numbers. 
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The Ki's are in fact irrelevant since they have no influence on the Gibbs mea- 

sures corresponding to the potentials, but it will turn out in Example 2.9 that it 

is convenient to allow for the term. 

One reason why ferromagnetism is interesting is the next result on ferromag- 

netic measures on finite sets. It is one of the so-called Griffiths inequalities, dis- 

cussed in Section IV.1 in [16]. Let S be a finite set, let A1 , . . . ,  Ak be given subsets 

of S, and let J 1 , . . . ,  Jk and K1, . . . ,  Kk be as in Definition 2.6. Let the measure 

#s  on { -1 ,  1} s be given by 

e-Hs(~) 
= - -  

Z s  

where 
k 

g s ( , )  = - J, l -I  , ( x )  + K ,  
i=l  xEAi 

and Zs is a normalizing constant. The Ki's are still irrelevant as they have no 

effect on #s.  

PROPOSITION 2.7: GRIFFITHS' INEQUALITY: T_fS and #s  are as above, then for 

any x E S and anyi  E {1 , . . . , k }  

0 
OJi/~s({7/: ~/(x) = 1}) > 0. 

This inequality can be used to derive results on ferromagnetic potentials on 

{ -1 ,  1} z" by considering certain limits as S increases to Z d. We will do so in 

Section 4. 

Clearly, the Ising model with J >_ 0 is ferromagnetic in the sense of Definition 

2.6. It is somewhat less obvious that the site-centered ferromagnet is ferromag- 

netic in this sense. To see this, we first need the following lemma: 

Let Yn = { -1 ,  1} '~ where n _> 2. Let the function Cn: Y,~ , Z be LEMMA 2.8: 

given by 

BEB,~ iEB 

where B,~ is the set of  all subsets B C_ {1 , . . . ,  n} (including the empty set) which 

have even eardinality. Then 

{ 2 n-1 if  yl . . . . .  y, ,  
Cn (y) = 0 otherwise. 
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Proof'. Suppose first that  Yl . . . . .  y~. Then 1-Les Yi = 1 for all B E Bn, and 

we have r = IBnl = 2 n-1. On the other hand, suppose that  it is not the case 

that  Yl . . . . .  y~. Then we can find j, k E {1 , . . . ,  n} such that yj = - Y k .  Now 

define a relation ~-, on Bn by 

iff [ for i = j,  k, i is an element of B1 U B2 but  not of B1 A B2, 
B1 B2 [ for i r j ,  k, i is an element of neither or both of B1 and B2. 

It is easy to see that  ,,, satisfies 

B1 ~ B2 =~ B2 " B1 and B2 r B1 
B I " ~ B 2 ,  B I ' ~ B 3  = ~ B 2  ~ - B 3  

for all B1 there is a B2 such that  B1 "~ B2 

so that it divides B,~ into pairs. Also 

1 - I Y ~ = - l - I Y ~  
iEB1 iEB2 

whenever B1 ~', B2, whence everything cancels in the sum ~ a e B n  1-IieB Yi so 

that r = 0. | 

Now it is easy to verify that the following ferromagnetic potential is nothing 

but an alternative description of the site-centered ferromagnet with parameter 

L. 

Example  2.9: The  site-centered ferromagnet  revisited: For any dimension d let 

k ---- 22d -- 1. Let A C Z ~ consist of the origin together with its 2d nearest 

neighbours. Let A1 , . . . ,  Ak be the k nonempty subsets of A whose cardinalities 

are even, and let for i = 1 , . . . ,  k 

L 1 O,(7/(A,)) = ~ (  - I I  •(x)). 
xEAi 

By Lemma 2.8 we now get, in the terminology of Example 2.4, 

k 
Z ~i(0(Ai)) = ( 0 if the origin is satisfied, 
i=1 L otherwise. 

This establishes that the site-centered ferromagnet really is ferromagnetic. 
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3. T w o  u n i q u e n e s s  c r i t e r i a  

In this section we discuss two uniqueness criteria for random fields with given 

conditional probabilities. The first one is the celebrated Dobrushin's criterion, 

which has been used in very many contexts ever since it was introduced in [6]. 

The second criterion, which we refer to as disagreement percolation, is much more 

recent [1]. Both criteria say that if the conditional distribution of the value at a 

single site depends sufficiently little on its surroundings, then we have no phase 

transition. The exact mathematical formulation of this is somewhat different for 

the two criteria, and it turns out that sometimes one of them is more effective, 

sometimes the other. The reader will find examples of this in Sections 4 and 5. 

Let F be a finite set and let X1 and X2 be two F-valued random variables 

with distributions #1 and #2, respectively. The v a r i a t i o n a l  d i s t a n c e  between 

X1 and X2 is defined as 

1 
d(Xl,X2) = ~ E I#l ( f )  - #2(f){ 

I E F  

and we write d(#l,/~2) for the same quantity. An equivalent definition would be 

d(X1, X2) = ~ac_a ~ Ira(E) - ~2(E)I. 

Let P be a measure on F zd. Let P~ denote the conditional distribution under 

P of the value at x given the configuration ~ on Z a \ { x } .  Suppose this quantity 

is independent of x (more precisely, suppose that  for any y we have P ]  = pT[ff). 

The measures for SOFTs satisfying the equivalent conditions in Proposition 1.8, 

as well as the Gibbs states considered in Section 2, have this property. Let 

p(y, x) = sup sup d(P~, P,~) 

where the supremum is taken over all configurations ~ on Z a \ { x }  and all con- 

figurations r/such that  r / =  6 everywhere except at the site y. Loosely speaking, 

p(y, x) is the maximal influence which the single site y can have on the distribu- 

tion at x. Under a certain technical condition called "quasilocality", which we do 

not need to bother about in this paper, we have the following result; see [6] and 

[7] for more details. 

PROPOSITION 3.1: DOBRUSHIN'S CRITERION: I/" 

E O(y,x)<l, 
y E Z  d ~.{z} 
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then P is the only measure on F z~ with the given conditional distributions. 

For the next uniqueness result, we need to say a few words about percolation. 

A standard reference on percolation is [9]; see also [14] for a brief introduction. 

Let G be a graph whose vertex set is Z d (so that "sites" and "vertices" from 

now on are synonyms) and whose edge set is shift invariant in the sense that the 

presence of an edge between x and y depends only on x -  y. The graph is assumed 

to be connected and locally finite, i.e. the number of edges incident to a given 

vertex is finite. By the shift invariance this number is the same for all vertices; 

we denote it NG. Two vertices are said to be a d j a c e n t  if they are incident to 

the same edge. An important special case is the n e a r e s t  n e i g h b o u r  g r a p h  on 

Z d, where two sites are adjacent if and only if they are nearest neighbours. By 

a p a t h  we mean a finite or infinite sequence of distinct sites xl ,  x2 , . . ,  in which 

consecutive sites are adjacent. 

In s i te  p e r c o l a t i o n  each site is assigned a value 0 or 1 according to some 

measure # on {0, 1} z~. A site whose value is 1 (0) is called o p e n  (closed).  The 

main objects of study in percolation are o p e n  pa ths ,  by which we mean paths 

on which all vertices are open. Particularly interesting is the possible existence 

of an infinite open path. B o n d  p e r c o l a t i o n ,  which we will not deal with here, 

is similar, except that in that  model it is the edges rather than the vertices that  

are open or closed. 

For p E [0, 1], let pp denote the measure under which each site independently 

is open with probability p and closed with probability 1 - p. The c r i t i ca l  p r o b -  

ab i l i ty  for site percolation on G is defined by 

pc(G) = inf{p E [0, 1]: #p(there exists an infinite open path) > 0}. 

When d _> 2, pc(G) is in fact nontrivial, i.e. Pc E (0, 1). We let, with some 

abuse of notation, pc(Z d) denote the critical value for site percolation on the 

nearest neighbour graph on Z ~. The critical value pc(G) is usually extremely 

hard to calculate exactly, but  numerous bounds are known. The disagreement 

percolation uniqueness criterion relies on lower bounds for Pc. The best lower 

bound today of pc(Z 2) is 

pc(Z 2) > 0.5416 

by a computer-assisted proof in [18]. Another bound, which will be of use to us 

later, is the following, from [12]: 
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PROPOSITION 3.2: The critical probability for site percolation on a graph G as 

above satisfies 
1 

Pc(G) ___ NG-----:-I" 

We now return to the measure P on F z~. Suppose P has finite range, i.e. that  

there is a finite set B C Z d such that  the conditional distribution P~ depends 

only on the configuration on T~B. Suppose furthermore that  B is the smallest 

set with this property, so that  

= { y :  p(y, x) > 0}. 

Let G be the graph with vertex set Z d and for which there is an edge between 

x and y if and only if y E B. It  is easy to check that  p(x ,y )  = 0 whenever 

p(y, x) = 0 so that  this definition of G is consistent. The uniqueness criterion 

from [1] now says 

PROPOSITION 3.3: DISAGREEMENT PERCOLATION: I f  

sup d(P~, P,~) < pc(G) 
~,~?EF za "-{~} 

then P is the only measure on F z~ with the given conditional distributions. 

The proof of this result and reason for the name "disagreement percolation" is 

roughly as follows: The proof is based on a coupling (see [17], [16], [1]) between two 

processes with measures P and P '  with the prescribed conditional distributions. 

The coupling is constructed in such a way that  the set of sites where the two 

processes take on different values (disagree) is stochastically dominated by a set 

of open sites under the measure pp for some p < pc(G).  Therefore there is a.s. no 

infinite path  of disagreement (i.e. no infinite path  of distinct vertices all of which 

disagree for the two processes), and any finite set S C Z d must be surrounded by 

some (random) layer on which the processes agree. The distribution inside this 

layer turns out to be the same for the two processes, and the result follows. 

4. Resu l t s  for t h e  beach  m o d e l  

A key idea in our proof of Theorem 1.10 is to establish an equivalence between the 

beach model with parameter  M and the site-centered ferromagnet with parameter  

L = log M, so that  the proof can be reduced to proving Theorem 2.5. The 
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equivalence, which is similar in spirit to results in [10] and [Ii], amounts to the 

following: 

Let the SOFT X be given by the beach model with parameter M. Consider 

a measure #b, with uniform conditional probabilities, for X. If all positives in F 

are identified with +i  and all negatives with -1, then the measure on {-1, i} z~ 

induced by #b turns out to be a Gibbs state for the site-centered ferromagnet 

with parameter L. 

Going the other way is also possible. Take a Gibbs measure Ps for the site- 

centered ferromagnet. Given a realization 77 E { - i ,  1 } z~, assign values from F to 

each site independently in such a way that a positive satisfied site gets its value 

from the uniform distribution on {I , . . . ,  M2}, a positive unsatisfied site gets its 

value from the uniform distribution on {i . . . .  , MI}, and similarly for negative 

sites. This procedure yields an element of X which is distributed according to a 

measure with uniform conditional probabilities. (This can of course only be done 

if e L is rational, since e L = M = ~ . )  

An important feature of these mappings between measures for the two different 

models is that they constitute a bijection. Hence, (non-)uniqueness of measures 

with uniform conditional probabilities for X is equivalent to (non-)uniqueness of 

Gibbs states for the corresponding site-centered ferromagnet. 

We now turn to proving this equivalence. Fix MI and M2 and the dimension 

d. Let glo -- { -1 ,  1} zd, ~1 -- {1 , . . . ,  M1} zd, and ~2 -- { 1 , . . . ,  M2} zd. We will 

construct a measure on the product space ~ = ~0 x ~1 x f12. An element of ~t 

will be denoted w = (wO,Wl,a~2). Let #0 be an arbitrary Gibbs measure for the 

site-centered ferromagnet with parameter L = log M = log MM---~, and let Pl and 

#2 be uniform i.i.d, measures on ~1 and gt2, respectively. Let p be the product 

measure #0 x Pl x #2. 

Let X be the beach SOFT corresponding to M1 and M2, with symbol set 

F = { - M 2 , . . . ,  - 2 ,  - 1 ,  1, 2 , . . . ,  M2}. Let Y be the random element of F z~ con- 

structed from ~, under the measure #, defined by 

Y(x)  = Y(x ,w)  = { wo(x)wl(x) if x is unsatisfied 
wo(x)w2(x) otherwise 

where x being unsatisfied means that w0(x) ~ wo(y) for some nearest neighbour 

y of x. It is easy to check that Y must be an element of X. Moreover, we have 

LEMMA 4.1: Y has uniform conditional probabilities with respect to X.  
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The following notation is useful for the proof, and also later. For S C Z d and 

a configuration 7/ E F S, let sgn(~/) denote pointwise sgn, i.e. sgn(~/)(x) = n(x) In(x)l 
for all x E S. Note that sgn(Y(x)) = w0(x). 

Proo[: Fix configurations ~' and ~", on 0An and Z d \ (An  u 0An), respectively, 

in such a way that ~' V ~" is compatible. Let ~ be a configuration on An such that 

V ~' v ~" forms an element of X. What  we need to show is that 

(Y(An) -- ~ y ( z ~ -  A n ) :  C v r # 

is independent of the choice of ~. We first compute a different, but related, con- 

ditional probability. 

Given ~ V ~' V ~", let j denote the number of unsatisfied sites in An U 0An, 

and let LZ~'V( '  be the normalizing constant for the distribution on An of the 

site-centered ferromagnet with parameter L and boundary condition sgn(~V ~') .  

We have 

(Y(An U 0An) -- r v r Y ( Z  d \ (An U 0An)) -- r sgn(Y(0An)) = sgn(~')) P 

(Y(An u 0An) = ~ v ~' sgn(Y(Z~)) = sgn(~ v ~' V (')) # 

(sgn(Y(An)) = sgn(~) sgn(Y(Z d "- An)) = sgn(~' V ~")) # 

-L j  
= M l J M f ( I A ,  uOA, I_j) e 

L Z~n ' v~" 

M 2 )  j M~IA~UOA~I e -L j  
= ~ Lz~.'v~" 

-L j  
= eLJM21A,~uOA,~ I e 

L Z~n ' v~" 

L Z~n'VC' 

which only depends on the things we condition on in the first line of the compu- 

tation. Hence, this conditional distribution is uniform over all possible configura- 

tions. If we now condition further, this time on Y(OAn), the obtained conditional 

distribution is of course still uniform, i.e. 

( r ( a n  u 0Ao) = ~ v r Y(Z ~ - An) = r v r  # 

,(r(An) = e ~(Z ~ "Ao) = ~'v e") # 
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is uniform, and we are done. | 

So now we know that any Gibbs state for the site-centered ferromagnet yields 

a measure with uniform conditional probabilities for the beach model. The next 

lemma tells us how to go the other way. 

LEMMA 4.2: Let Y '  be a random element of X satisfying the uniform conditional 

probabilities property. Then sgn(Y') is distributed as a Gibbs state for the site- 

centered ferromagnet with parameter L. 

Proof: The proof will be by comparing Y' to Y, where Y is the X-valued random 

variable constructed above, and for which we have that sgn(Y) is distributed 

according to the Gibbs measure #o. 

Let A[B d C[D be short for the statement "the conditional distribution of A 

given B is the same as the conditional distribution of C given D", where A, B, 

C and D are random variables. We are done if we can show that  for any n, 

sgn(Y'(An)) sgn(Y'(Z d \ An)) d sgn(Y(An)) sgn(Y(Z d \ An)). 

We proceed to prove this. We have 

Y'(An+I) Y ' ( Z  d \ An+l) d Y(An+I) Y(Z d \ An+i) 

since both conditional probabilities are uniform over all allowed configurations. 

If we now condition on sgn(Y(An+l \ An)) as well, the conditional distributions 

must still be equal, i.e. 

Y'(An+I) Y ' ( z d  \ An+i), sgn(Y'(An+l \ An)) 

d Y(An+I) Y ( Z  d \ A~+l),sgn(Y(An+l \ A~)). 

Since sgn(Y'(An)) and sgn(Y(hn)) can be expressed in terms of Y'(An+I) and 

Y(A~+I), respectively, it follows that 

sgn(Y'(A,~)) Y ' ( Z  d \ A~+I), sgn(Y'(A,~+l \ An)) 

d sgn(Y(An)) Y ( Z  d \ h~+l) ,sgn(Y(An+l \ An)). 

It follows from the construction preceding Lemma 4.1 that  the right hand side 

only can depend on Y ( Z  a ". A~+I) through sgn(Y(Z a \ An+l)), because for x E 

Z d \ An+l we have that  T,  A1 (with A1 defined as in Example 2.4) does not 



338 O. H~,GGSTR(~M Isr. J. Math. 

intersect An. The same thing must then hold for the left hand side as well. 

Hence, Y ' ( Z  d \ An+l) and Y ( Z  d \ An+l) can be replaced by s g n ( Y ' ( Z  d ". An+l)) 

and sgn(Y(Z d \ An+l)), respectively, in the conditioning, and we get 

sgn(Y ' (h . ) )  sgn(Y'(Z d \ A.))  __d sgn(Y(h . ) )  sgn(Y(Z d ". An)) 

so the proof is complete. | 

Using Lemmae 4.1 and 4.2 we can now go both ways: from a Gibbs state for 

the site-centered ferromagnet to a measure with uniform conditional probabilities 

on X, and the other way around. That  this actually induces a one-to-one corre- 

spondence between the Gibbs states and the measures with uniform conditional 

probabilities follows once we have 

(i) when going from the site-centered ferromagnet to the beach model and back 

again, we end up with the Gibbs state we started with, and 

(ii) when going from the beach model to the site-centered ferromagnet and 

back to the beach model, we get back the measure with which we started. 

(i) is immediate while (ii) is a consequence of the following property of measures 

with uniform conditional probabilities for the beach model: conditional on the 

signs on Z a, all values are independent with, for each x, ~/(x) being uniform over 

all values that are allowed given the signs at x and its nearest neighbours. This 

follows easily from the fact that  y(x), conditional on 7/(Z a \ { x } ) ,  is uniformly 

distributed over all allowed values. 

It is now easy to explain why M is the only interesting parameter for the beach 

model (although one can very well realize this without considering the relation 

with the site-centered ferromagnet). Let X and X ~ be two beach SOFTs such 
that  M_M_z M' M1 = "~l (with the obvious notation). Then these correspond to the same 

site-centered ferromagnet, whence their measures with uniform conditional prob- 

abilities yield the same distributions of positives of negatives. We feel that,  at 

least in this context, this is where the "essence" of the model lies, since what re- 

mains given the signs is just independent uniform random variables. In particular, 

X has a unique measure of maximal entropy if and only if X ~ has. 

We now concentrate our efforts on deriving properties for the site-centered 

ferromagnet. The corresponding properties for the beach model will follow easily 

using the above correspondence. 

First, we discuss a certain monotonicity property for the site-centered ferro- 

magnet. For a nice and general discussion on this kind of monotonicity argu- 
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ments, see Sections II.2 and III.2 in [16]. For S C_ Z d and two configurations 

6, ~/E { -1 ,  1} s we write 6 ___ ~/if 6(x) < ~(x) for all x �9 S. 

De~nition 4.3: Let # and v be probability measures on { -1 ,  1} s. We say that 

# ~ v if there exists a probability measure m on {-1 ,  1} s • { -1 ,  1} s whose first 

and second marginals are tt and v respectively (i.e. a coupling of # and u) and 

such that  

m{(6, 7/): 6 _ 7/} = i .  

An equivalent definition would be the following: # _ v if for every function 

f :  { -1 ,  1} s --* R which is continuous in the usual product topology, and mono- 

tone in the sense that f(6) < f(71) whenever 6 ~ ~/, we have 

/ Idp <_ / Idv. 

For a configuration 6 �9 { -1 ,  1} z~ -,{x), let #L denote the conditional distribu- 

tion of the value at x given 6, for the site-centered ferromagnet with parameter 

L. 

LEMMA 4.4: Let 6,~/�9 { -1 ,1}  z~'{~} be such that 6 ~_ r 1. Then 

L 

Proof." Let the set Ax consist of the site x together with its 2d nearest neighbours. 

Let n + denote the number of unsatisfied sites in A,  for the configuration on Z d 

which equals 6 on Z a \ { x }  and which equals +1 at x, and let n~,  n + and n~ be 

the obvious analogous quantities. We have 

e -Ln+ 1 

= e_L + + e-L ; - 1 + 

and 
e -L~+ 1 

# L ( ( + l } )  = e -L"+ + e - in ;  1 + eL("+-n;) 

Some thought reveals that n + - n~- >_ n + - n ;  whence #L({+I})  < #L({+I})  

SO that  #L ~ #L. | 

Now that  we have Lemma 4.4, it should not be hard to believe that  the cor- 

responding statement where the single site x is replaced by a finite set S holds 

as well. The next lemma tells us that this is so. For a finite set S C Z d and a 
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configuration/5 E {-1,  1} za " s let I AL denote the conditional distribution given S,$ 

6 of the configuration on S for the site-centered ferromagnet with parameter L. 

LEMMA 4.5: Let S C Z d be finite and let ~, ~ E {-1,  1} zd"  s be such that ~ ~_ 71. 

Then 
L L 

#s,~ ~- #s,, .  

Before giving the proof we remark that the same thing holds true for all ferro- 

magnetic potentials with pairwise interactions only (see [16]), while for interac- 

tions involving three or more sites simultaneously, as is the case here, the result 

does not hold in general (neither does Lemma 4.4). Moreover, the result can- 

not be extended to infinite S, as the reader may convince herself once we have 

established a phase transition. 

Proof of Lemma 4.5: The proof is somewhat standard (see e.g. the proof of 

Lemma 2.3 in [3]) so we will be a bit brief. 

We first define a continuous finite state Markov process P~ on {-1,  1} s which 

is irreducible and has stationary distribution ]A L Let $' denote an element S,~" 

of {-1,  1} S. The dynamics are given by flip rates as follows. Each site x flips 

(changes its value) independently of all other sites, at rate 

{- c~(x, ~') = e-n~v6 ' +  if/5'(x) = 1 
e-nsv~ ' if ~'(x) = - 1  

where n[v ~, and + n~v ~, are defined as in the proof of Lemma 4.4. 

It is not hard to show that  P~ is irreducible. To show that  L #S,~ is a stationary 

distribution, it suffices to show that it is reversible, which means that for any 

/5~, ~ �9 {-1,  1} s we have 

L t t L t t t 
= 

where q(~,  $~) is the rate at which ~ switches to ~ .  To see this, first note that  

q(~,  $~) = 0 unless/5~ and ~ differ at exactly one site. So suppose $~ =/5~ = ~' 

on S \ { x }  and ~ ( z )  = 1, $~(x) = -1 .  Then 

- L ! 
_ c (x, _ _ 

q($~, ~ )  c,~(x, ~'2) -'~+ L , 

whence L #S,Z is reversible and stationary. 
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Now define the  Markov  process Pv with s t a t ionary  d is t r ibut ion  L #S,n in the  
same way. In order to show ].t L --< L S,a -- #S,n we const ruct  a coupling for P~ and P v ,  

i.e. a Markov process on { - 1 ,  1} s x { - 1 ,  1} s whose first and  second margina ls  
are Pa and  Pv" For (5', r/') E { - 1 ,  1} s • { - 1 ,  1} s the site x flips according to 

(1,1) 

(--i, --1) 

(1, -1) 

(-1,1) 

(--1, I) 
flips to (1,-1) 

(--1, -1)  
(1,-1) 

flips to (--1, 1) 

(1,1) 

flips to ( - 1 , - 1 )  
(1,1) 

(1,1) 
flips to 

(-1,  -1)  

c6(x, 6') - min(c6 (x, 6'), cn(x , ~1')) 

at rate cn(x,~l' ) - min(c~(x,6 ' ) ,cn(x,~l ' ) )  

min(ca (x, 6'), cn(x , ,it)) 

c6(x, 6') - min(c~ (x, 6'), co(x, ,/')) 
at rate cn(x,rl' ) - min(c~(x ,6 ' ) ,cn(x ,r l ' ) )  

min(c~ (x, 6'), co(x , rl')) 

at rate ~ c~(x,6')  
c, (x, n') 

at rate c~(x, 6') 
c,(x,n'). 

This is the so-called Vasershtein (or basic) coupling discussed e.g. in [17] and 

[16]. I t  is easy to check tha t  the marg ina l  flip rates  are the  desired ones. Moreover,  

one can use the proof  of L e m m a  4.4 to see t ha t  the flip ra tes  are such t ha t  the set 

H = {(5',  ~/') E { - 1 ,  1} s x { - 1 ,  1}s: 6' ~_ 7/'} is invar iant  for the  coupled process;  

this is where 5 ~ ~ is used. S tar t ing  in a s ta te  (6~, ~') E H the  process s tays  

in H forever. By general  Markov  chain theory  the d is t r ibut ion  approaches  some 

s ta t ionary  limit measure  v as t --* ~ .  Clearly v ( H )  = 1 and the two margina ls  
L ~L ..< ]AL of u are ~Ls,a and # s , v ,  whence s,~ - s,v" | 

Let #,~,+L be the  condi t ional  d is t r ibut ion of the configurat ion on An given the  

configurat ion which equals + 1 all over Z a \ A,~. So #n,+L is a measure  on {--1, 1}h~ 

but  it can equally well be thought  of as a measure  on { - 1 ,  1} zd which is con- 

cent ra ted  on the event t ha t  every site in Z d \ An has the  value +1.  W i t h  this 

in te rpre ta t ion  in mind,  note  t h a t  L e m m a  4.5 implies t ha t  

L L 
#n2,+ - #nl ,+ for n l  _< n2. 

Monotonic i ty  and compac tness  now guarantee  t ha t  the  measure  

#L l im L = /Zn, + 
n ' - - + O 0  

exists. Clearly, #~ is a Gibbs state for the site-centered ferromagnet. Moreover, 

we have, for an arbitrary Gibbs s tate  u for the same mode l  and for any n, 

u ~  L 
_ t t n , +  
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whence 

v ~ # ~ .  

We refer to this property by saying that #~_ is a m a x i m a l  Gibbs state. It is easy 

to see that  #L must be translation invariant. By symmetry there must of course 

also exist a m i n ima l  Gibbs state #L obtained similarly. The following lemma is 

useful: 

LEMMA 4.6: The following three statements concerning the site-centered ferro- 

magnet with parameter L are equivalent: 

(i) #L = #L_. 

(ii) There is only one Gibbs state. 

(iii) There is only one translation invariant Gibbs state. 

Proof." (i) ~ (ii) since # ~ v and v ~ p imply # = v, while (ii) =v (iii) and (iii) 

(i) are immediate. | 

Note also that the symmetry between #L and /~L implies that 

#L({T/: r/(X) = 1}) +/zL({r/: r/(X) = 1}) = 1 

whence 
1 

#~_({r/: ~/(x) = 1}) > ~. 

We now state three lemmae whose proofs we defer slightly. Together they will 

yield Theorem 2.5. 

LEMMA 4.7: Suppose there is a unique Gibbs state for the site-centered ferro- 

magnet in d dimensions with parameter L1. Then the same thing holds for the 

site-centered ferromagnet in d dimensions with parameter L: whenever L: <_ L1. 

LEMMA 4.8: The site-centered ferromagnet in d >_ 2 dimensions with parameter 

L has more than one Gibbs state if 

L > 2 2d-2 log(1 + v/2). 

LEMMA 4.9: The site-centered ferromagnet in d dimensions with parameter L 

has a unique Gibbs state if 

(2d §247 
L < l o g ~ 2 d  2 + d _ l  " 
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so that  Lc(d) �9 (0, oc). 

Proof of Theorem 2.5: Lemma 4.7 implies that there is an L~(d) E [0, c~] such 

that there is a unique Gibbs state when L < Lr and more than one Gibbs 

state when L > Lc(d). Lemma 4.8 implies 

Lc(d) _< 22d-2 log (1 + V/-2) < oo 

and Lemma 4.9 implies 

(2d2 + d +  1 ) 
Lc(d) >_ log \ 2d2 + d _  l > 0  

l 

Proof of Theorem 1.10: Recall the one-to-one correspondence between Gibbs 

states for the site-centered ferromagnet and measures with uniform conditional 

probabilities for the beach model, and suppose L > Lc(d). By Lemma 4.6, the 

site-centered ferromagnet with parameter L has at least two translation invariant 

Gibbs states. The beach model with parameter M = e L then has at least two 

translation invariant measures with uniform conditional probabilities. Hence it 

has, by Proposition 1.8, at least two measures of maximal entropy. Suppose on 

the other hand that  L < Lc(d). Then the site-centered ferromagnet has a unique 

Gibbs state, so that the beach model with parameter M = e L must have a unique 

measure of maximal entropy. Since e L is increasing in L the result follows with 

M~(d) = e Lc(d). m 

The bound 
2d 2 + d + 1 

i ~ ( d ) >  2d 2 + d _ l  

mentioned in the introduction is now an immediate consequence of Lemma 4.9. 

Strictly speaking we did not have to use Lemma 4.8 in order to derive Theorems 

2.5 and 1.10, since we could instead have used the result from [3] that  there are at 

least two measures of maximal entropy for the beach model whenever M > 4e28 d. 

We include Lemma 4.8 anyway since our proof involves a technique quite different 

from the one in [3]. 

We now complete this section by proving Lemmae 4.7, 4.8 and 4.9. First, 

however, we quote a result from [16] which we will need. 

LEMMA 4.10: Let tt and u be measures on {-1 ,  1} zd such that p ~_ u. I f  

~({~: ~(x) = 1})=v({~: ~(x) = 1}) 
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for all x C Z d, then # = v. 

LI Proof of Lemma 4.7". Consider the measure Ps,+ and view it as a measure on 

{-1,  1} A~. By the parameterization in Example 2.9, the interactions describing 

this measure fits into the framework of Griffiths' inequality. It is easy to check 

that  we do not get any boundary problems, the point being that for interactions 

(Ih involving sites both in As and in Z d \ As we can forget about the latter 

since (due to the boundary condition which equals +1 all over Z d \ An) their 

contribution to (I)~ is just a multiplication with +1. Griffiths' inequality now 

yields, for L2 < L1 and any x E An, 

L2 L1 ps,+({r/: r/(x) = 1}) < #n,+({~/: r/(x) = 1}) 

SO that  by letting n --+ co we have 

#L2({r/: 7/(X) = 1}) < #LI({~/: r/(X) = 1}). 

L1 Suppose now that pL, is the only Gibbs state with parameter L1. Then p+ = pL1 

so that  by symmetry 
1 #51 ({T/: r/(x) = 1}) = 

whence 

Again, symmetry yields 

1 
#L2({T/: r/(X) = 1}) = 

1 pL2({~/: r/(x) = 1}) = 
5 

so that by Lemma 4.10 we have #L2 = #L2 and by Lemma 4.6 this is the only 

Gibbs state with parameter L2. | 

P r o o f  o f  L e m m a  4.8: Using the parameterization of the site-centered ferromagnet 

in Example 2.9, a similar application of Griffiths' inequality as in the previous 

proof shows that  the Ising model with coupling constant J has a unique Gibbs 

state whenever the site-centered ferromagnet with parameter L = 2 2 d - 1  J has a 

unique Gibbs state. But since for d _> 2 the Ising model with coupling constant 

J > �89 log(1 + v~) has a phase transition the result follows. | 

P r o o f  o f  L e m m a  4.9: The idea of this proof is to apply Dobrushin's criterion 

to the site-centered ferromagnet. It is possible to use disagreement percolation 

instead if one prefers to, but that will yield a worse lower bound for Lc(d).  
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Given a configuration 5 �9 { -1 ,  1} zd "{~}, let A~, n + and n [  be as in the proof 

of Lemma 4.4. The distribution #L of the value at x depends only on the values 

on the set 

B~ = {y �9 zd \ {x} :  3z �9 Z d such that  {x ,y}  C_ TzA~}. 

We think of Bx as the set of sites which interact directly with x. B~ can be 

written as the union of the disjoint sets B 1, B~ and B 3, where 

B1 = {Y �9 Zd: IlY - xl[1 = 1},  

B 2 = { y  �9 Zd: [[y -- xl[1 = 2, IlY -- x l l ~  = 1},  and  

B3  = {Y �9 zd:  IIY -- xl[1 ~-- 2 ,  IIY - xlloo -- 2} .  

This partit ion of B~ describes the three different positions, in relation to x 

and modulo rotations and reflections, which a y E Bx can have. Let $y E 

{ -1 ,  1} za'{~} be the configuration obtained from 5 by flipping the value at 

y. Furthermore, let An~ = n + - h i .  We have 

1 1 I 
d ( # L ' # ~ L ) = I # L ( { + I } ) - - # L ' ( { + I } ) I =  l + e  LAn` l+eLAn '~{"  

Since 
i{z E Zd: {x,y}  C TzAx}[ = { 2 for y E Bl  tA B 2 

- 1 for y E B 3 

it is easy to verify that 

I A n ~ - A n ~ [ <  { 2 f o r y E B  1 U B  2 
- 1 for y E B 3 

for all $, with equality for some $ (depending on y). Since the function 

1 
/ ( t )  - 

l + e  t 

is decreasing and has a derivative if(t) such that  for all t, if(t) = f ' ( - t )  and 

if(t) >_ if(O), it follows that 

p(y,  x )  = sup ~(~, ~) < 
5E{-  1,1}za "-{~} [ 

1 1 for  E 1 2 - ~ y B~ U B~, 
1 21 for y E B~. 

Again, it is not hard to check, by finding suitable 8, that  this inequality is in 

fact an equality. Since [Bz z 0 B~I = 2d 2 and [B~[ = 2d, the sum in Dobrushin's 
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criterion becomes 

p(y,x) = ~ p(y,x) 
y E Z  d "- {x} yEB~ 

= 2d2 1 + -e - L  1 -~ e L -{- 2d 1 + e - L  

eL-l-1 
= (2d2 + d)~--E-- 1 

which is less than 1 when 

i.e. when 

confirming our result, l 

2d 2 + d +  1 
e L < 

2d 2 + d -  1'  

L < log \ 2 d  2 + d -  ' 

5 .  Proofs  of  T h e o r e m s  1 . 1 2  a n d  1 . 1 3  

Theorem 1.12 will be proved using disagreement percolation. It would certainly 

be reasonable to try to prove it using Dobrushin's criterion, but, in contrast to 

the proof of Lemma 4.9, this will here yield uniqueness of measure of maximal 

entropy for a smaller set of SOFTs. See [1] for further comparisons for the two 

criteria. 

P r o o f  of  Theorem 1.12: Suppose X has generosity G and alphabet F with car- 

dinality N. Let 6, 7/ E F zd "{r be two compatible configurations. Let Fa E F 

denote the set of allowed values at x given 6, and define F n analogously. We may 

without loss of generality assume IFe] _ ]FnI, and we have 

Also, 

IF, I IF,~l a < ' - ~  
- N - N "  

INn ~ Eel ~ 1 - IF~I < 1 - G. 
N N - 

T h e  conditional distributions P~ and P{ of the value at x are uniform on Fe and 

Fn, respectively. It is easy to see that 

d ( P ~ , P ~ ) -  IF,\F~___J < 1 - ( 7  
IF~l - C 
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whence 
1 - G  

sup d(P~, P~) < - -  
~,~ez a -.{z} - G 

since (5 and y are arbitrary. 

If X is a nearest neighbour system we have that  P ]  and P~ only depend on 

nearest neighbours of x, so that  by disagreement percolation we have uniqueness 

if 
1 - G  
- - - 5 - -  < Pc(Z ) 

and the second part  of the theorem follows. 

To get the first part ,  note that  if X has range R, then P~ and P~ only depend 

on the values at sites within L~ R from x. Consider the graph G with 

vertex set Z d and where there is an edge connecting x and y iff [Ix - y]]oo < R. 

Each vertex is incident to ( 2 R +  1) d - 1 edges, so that  by Proposition 3.2 we have 

that  the critical probability pc(G) for site percolation on G satisfies 

1 
pc(G) _> 

(2R + 1) d - 2" 

Disagreement percolation now yields uniqueness whenever 

1 - G  1 - - <  
G (2R q- 1) d --  2 

and the first part  of the theorem follows. II 

The key to proving Theorem 1.13 is the following lemma, the proof of which 

most of our remaining work will be devoted to: 

LEMMA 5.1: Consider the Widom-Rowl inson  model  in 2 dimensions with 

parameters r and m.  For any fixed m there is an R such that  the model  has 

more than one measure o f  maximal  entropy as long as r > R. 

We remark that  this result is true for any dimension d > 2, as the reader may 

be convinced by studying our proof and comparing with [15]. We prefer to stay 

in 2 dimensions to keep things simpler, as this turns out to be sufficient to prove 

Theorem 1.13. 

Proo f  o f  Theorem 1.13: For d = 2 the result is almost immediate from Lemma 
2 5.1. Given e > 0, let X be the Widom-Rowlinson model with m _> 7 so that  

m - 2  
G ( X )  - - -  > 1 - 

m 
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and pick r sufficiently large to guarantee more than one measure of maximal  

entropy. 

We now turn to the case d = 3. Let X= be the 3-dimensional SOFT with the 

same symbol set as X and with rules as follows. On each horizontal plane the 

rules are the same as those for X, while in the vertical direction there are no 

restrictions. Clearly, G(X=)  = G(X).  Pick two different measures of maximal  

entropy/~1 and/~2 for X, and construct measures Vl and v2 on X= given by 

/21 ~--" I - I / z l  
iEZ 

and 

/'2 : Y I  1~2 
iEZ 

so that  in words, under vl, all horizontal planes are independent with each plane 

being given the measure pl ,  and similarly for v2. It  is easy to check that  vl and v2 

are measures of maximal  entropy for X using Proposition 1.8. Finally for d _> 4 

we can proceed as for d = 3 in the obvious way, so the proof is complete. | 

Proof of Lemma  5.1: The following terminology, as well as parts  of the proof, is 

borrowed from [15]. For fixed m, r and a configuration 6 �9 { 1 , . . . ,  m) s, where 

S C_ Z d, we say that  a site x �9 S is 

black if 5(x) = 1, 
grey if ~(x) r 1 but  3y such that  ]l x - yl[~ _< r and 5(y) = 1, 
red if ~(x) = 2, 
pink if 6(x) ~t 2 but 3y such that  [[x - Y[[o~ < r and df(y) = 2, 
white if none of the above apply. 

Note tha t  a site can be both  grey and pink at the same time. We write "reddish" 

for "red or pink", and "blackish" for "black or grey". 

Suppose now that  there is a unique measure of maximal  entropy # for the 

Widom-Rowlinson model with parameters  m and r. The symmetry  with respect 

to (1, 2} of the model implies that  

1 (1 - #(x  white)). #(x reddish) = /~(x  blackish) >_ 

We have, by Proposition 1.8, that  

m - 2  
#(x white) = #(x white]W~)#(W~) _< tz(x white]W~) - - -  

m 
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where W~ is the event tha t  there is no black or red site within L~176 r 

from x (except possibly at x). Hence 

(.) p(x reddish) > ~ 1 . . . .  . 
m m 

We are done if we can contradict (*) by picking r sufficiently large and con- 

structing a suitable measure of maximal  entropy. This will be accomplished by a 

so-called contour (or Peierls) argument (see [7], [15]). 
Let m,r #n,1 be the uniform distribution over all allowed configurations on An 

given the configuration on Z 2 \ An where every site has the value 1. 

Let A~ be the nearest neighbour graph on 

{ 1 1 1 } {  1 1} 
- n - ~ , - n + ~ , . . . , n +  x - n - ~ , - n + ~  . . . .  , n +  . 

This is sometimes called the dual graph for the nearest neighbour graph on An. A 

c i r cu i t  C in A* is a sequence of distinct (except for the first and the last) vertices 

vl, v2 , . . . ,  vk, Vl such that  consecutive vertices are nearest neighbours. C can be 

identified with the edge sequence el, e2 , . . . ,  ek where for i = 1 , . . . ,  k - 1, e~ is the 

edge between vi and vi+l, and ek is the edge between vk and vl. As one travels 

along a circuit clockwise, each edge has one well-defined site y E Z 2 immediately 

to the left, and one immediately to the right; the former being outside of the 

circuit and the latter inside. Given 5 E {1 , . . . ,  m} A", a circuit C is said to be a 

c o n t o u r  for x e An (and 5) if 

(a) C surrounds x, and 

(b) as one travels around C clockwise, all sites immediately to the left are 

non-reddish, and all sites immediately to the right are reddish. 

With the value 1 all over Z 2 \ An, so that  Z 2 \ An is all black, it is clear (if not, 

see [7]) that  if x E An is reddish there must exist at least one contour for x. We 

will now show that  for large r the probabili ty of a contour for x is small. 

For a contour C ,  for x, let B1 C An denote the set of sites in An that  are 

located outside of C, .  Furthermore, let B2 C_ An be the set of sites which are 

located inside C ,  but at L~176 at most r from some site located outside 

C~. Finally, let B3 C_ An be the set of sites inside C~ which are not members  of 

B2. B1, B2 and B3 form a parti t ion of An. 

Some thought reveals tha t  for each bond of Cx travelled clockwise, the r nearest 

sites looking straight to the right belong to B2, and each site in B2 can be related 
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in this way to at most 3 edges in C~, whence 

_ r  C IB21 > 51 =1, 

where ICx[ denotes the length of Cx. Also, all sites in B2 must be pink. 

We now estimate the probability that a fixed circuit C= that  surrounds x is a 

contour for x. Fix 5 E { 1 , . . . , m }  A" so that C= is a contour. Let 51, 52 and 53 

be the restrictions of 5 to B1, B2 and B3, respectively. Let the transformation 

Tc=: {1, . . .  ,m} BIUBz ~ {1 , . . .  ,m} B1UB3 be defined by flipping all l ' s  on B3 to 

2 and all 2's on B3 to 1, and keeping all other values as they are. Note that  Tc= 

is a bijection. 

We now compare the probability of 51 v53 to that of Tc= (51 v53). Since each site 

in B~ can take the values 3, 4 , . . . ,  m given 51V53 and the event {Cx is a contour}, 

while they can take the value8 1, 3; 4 , . . . ,  m given Tc, (51 V 53), we have 

m,r contour) m 2 \ IB~l ~1 ~1 #n,l (51 V 53, C~ is a m - 2 

l~n,1 (Tc. (51 V 53)) 

Summing over all 51 V 53 6 { 1 , . . . ,  m} BIUB3 that can make Cz a contour for x 

we get 

m,v contour) #n,1 (Cx is a = 

< 

< 

E m,r contour) #n,1 (51 V 53, C~ is a 
51 V53 

E m~1" ~n,1 (51 V 5a, C~ is a contour) 
51VSa 

E m r/Td 
51 V53 

h---~-  1 /  " 

A simple argument (see e.g. [7], Lemma 6.13) shows that  there are at most 

13 t-1 circuits of length l that surround x. Hence the expected number E m'r of 

contours for x satisfies 

E m , r _ < E l 3 t _  1 m - 2  ~t 

/---1 

uniformly in the box size n. Since (m-2)~ m-1 can be made arbitrarily small by 

making r large, it is clear that for large r the sum converges and can even be 
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made  as small  as one prefers. Hence 

1 m,r  
#,~,1 (x reddish) < 2m 

uniformly in x and n for some sufficiently large r. Compac tness  guarantees  the 

existence of the measure  

# ~ , r =  l im m,r 
i---* oo Pn , ,  1 

for some subsequence (il ,  i 2 , . . . )  of (1, 2 , . . . ) .  This  measure  on {1, 2 . . . .  , m} z~ has 

uniform condit ional  probabil i t ies  with respect  to the Widom-Rowl in son  model  

with pa r ame te r s  m and r,  and satisfies 

1 1 
, ~ ' " ( x  reddish) < ~ m  < --m 

for all x. Monotonic i ty  a rguments  similar to those in Section 4 show tha t  # ~ ' r  

is t rans la t ion  invariant.  Hence it is a measure  of max ima l  en t ropy and we have a 

contradict ion to (*), as desired. | 
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